

BEST PRACTICES FOR EDGE CRACKING

DARLENE C. GOEHL, P.E. TXDOT – BRYAN DISTRICT – MAY 31, 2013

OUTLINE

- Problems Flexible and Rigid Pavement
 - Edge Cracking
 - Environmental Cracking
 - Contributing Factors
- Testing and Design
 - Flexible Pavement
 - Design Techniques
 - Rigid Pavement
 - JCP with reinforced repair
- Maintenance

FLEXIBLE PAVEMENT LONGITUDINAL CRACKING PROBLEMS

FLEXIBLE PAVEMENT LONGITUDINAL CRACKING PROBLEMS

FLEXIBLE PAVEMENT LONGITUDINAL CRACKING PROBLEMS

CRACKING IN JOINTED CONCRETE PAVEMENT

WEATHER - DROUGHT

ENERGY SECTOR ISSUES

SUPERHEAVY LOADS

PROJECT SPECIFIC ISSUES

- Edge Support
- Steep Front Slopes
- Soils
 - Typically PI>35
- Vegetation
 - Oak Trees

SOME CAUSES OF LONGITUDINAL CRACKING

- Subgrade
 Shrinkage
 associated with:
 - PI > 35
 - Trees near edge
 - Summer droughts
 - Stiff bases

IDENTIFY THE CAUSE OF CRACKING

- Assemble Background Information
- Nondestructive testing (NDT) Evaluation and Section Breakdown
 - Ground Penetrating Radar (GPR)
 - Falling Weight Deflectometer (FWD)
- Verifying Pavement Structure and Sampling
 - Auger samples of pavement
 - Verification of problem location
 - Dynamic Cone Penetrometer (DCP) on shoulder/front slope for widening
 - Subgrade properties

ONLINE SOIL DATA

 <u>http://websoilsurvey.</u> <u>nrcs.usda.gov/app/</u> <u>WebSoilSurvey.aspx</u>

Web Soil Survey - Windows Internet Explorer		
○ ○ ▽ Ion http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx	👻 🍫 🗙 🔽 Bing	• ٩
File Edit View Favorites Tools Help	x	🗞 Convert 🔻 🔂 Select
🚖 Favorites 🛛 🙀 🚺 Suggested Sites 👻 🔊 Web Slice Gallery 💌 🔊 Customize Links 🗿 Free Hotmail 🔊 NOAA 🗿 TxDOT's Crossroads 🦯 TxDOT's Internet Site 🕥 Winds	ows Marketplace 🔊 Windows Media 🔊 Windows	
🛞 - 🕫 Citrix Online 🚺 Web Soil Survey 🗙	🟠 🕶 🗟 👻 🖃 🚔 🕶 Page 🕶 Si	afety 🕶 Tools 🕶 🔞 🕶 ≫
TSDA tribulation presented a factoria (* 17. a) * 0 *		
Natural Resources Conservation Gervice		avxex
Contact Us Download Soils Data Archived Soil Surveys Soil Survey Status Glossary Preferences Link Logout Help		
Area of Interest (AOI) Soil Map Soil Data Explorer Shopping Cart (Free)		
		0
P		G
Search 🕲 👝 Area of Interactive Man		0
Area of Interest	Scale (not to scale)	
Ouick Navigation	277 376 APPA 53 25	5)
	69 675 270 77 68 81 80 DE	
State and County		MD
Soil Survey Area		
Latitude and Longitude		
PLSS (Section, Township, Range)	JKY Jan V	
Bureau of Land Management	24 275 40 85 442 3	
Department or Derense		′ III I
National Park Service	565 26 126	
Hydrologic Unit	285 SC	
	459	
	AL 185 GA 16 95	
		1.
	Sec. 1595	
		A PORT
0 208mi		
FOIA Accessibility Statement Privacy Policy Non-Discrimination Statement Information Quality	JSA.gov White House	

4 v 3 100%

Internet | Protected Mode: Off

TYPICAL SOIL MAP FOR BRYAN DISTRICT

SH OSR – (FM39 to 4 miles West) PI ranges 5 to 55 over length of project and within the same boring.

PAVEMENT EVALUATION TOOLS

- GPR thickness variability; identify major problem areas; sampling locations
- DCP in-site strengths of lower layers
- FWD Strength variability; subgrade stiffness entire project

DCP

- Determine underlying pavement support
- Determine depth of failure shear plane for edge failures

PAVEMENT EVALUATION TOOLS

Soil and Pavement sampling

PAVEMENT TESTING VS. PROJECT COST

Testing is typically less than 1.5% of project cost.

	a the second	Project	and the second		Pave	Soil	Total	Test % of total
Scope of Work	Project	(28' rdwy)	GPR	FWD	Cores	Cores	Testing	Project Cost
	\$/sy	\$/mile	\$/mile	\$/mile	\$/mile	\$/mile	\$/mile	\$/mile
Overlay w/ underseal	\$15.22	\$250,000	\$155	\$100	\$110		\$365	0.15%
Rework + 6" FB + 2cst	\$16.44	\$270,000	\$155	\$100	\$110	\$3,500	\$3,865	1.43%
Cement Treat exist + FB+2cst	\$18.26	\$330,000	\$155	\$100	\$110	\$3,500	\$3,865	1.17%
Spot Repair (est 15% repairs 8" thick)+SC	\$7.00	\$115,000	\$155	\$100	\$110	June and	\$365	0.32%
Spot Repair (est 25% repairs 8" thick)+SC	\$10.00	\$165,000	\$155	\$100	\$110		\$365	0.22%

Note: Pavement is approximately 70% of the total project cost. Preliminary Engineering, including testing, is approximately 4% of the total project cost.

FLEXIBLE PAVEMENT DESIGN APPROACH

DESIGN TECHNIQUES

TYPICAL LOW VOLUME ROADWAY – PAVEMENT REPAIR

Goal –

Uniform Pavement Structure Widen to improve edge support.

PROPOSED TYPICAL SECTION

VARIABLE PAVEMENT STRUCTURE

Variable depths HMA up to 9 inches, 3 inches of base, PI 60 soils Lots of maintenance; No shoulders Traffic handling issues

FM - HMA THICKNESS

UNIFORM PAVEMENT STRUCTURE

CHANGE DESIGN STRATEGY THROUGHOUT THE LIMITS OF THE PROJECT

From - To	Treatment
(feet)	
0 - 700	2 inch overlay only (new construction)
700 - 1800	Mill 4 inches of HMA the FDR 8 ins + base overlay
1800 - 3000	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
3000 - 6000	FDR 8" + base overlay
6300 - 7200	Mill 4 inches of HMA the FDR 8 ins + base overlay
7200 - 8900	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
8900 - 14000	Mill 4 inches of HMA the FDR 8 ins + base overlay
14000 - 15600	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
15600 - 16700	Mill 4 inches of HMA the FDR 8 ins + base overlay
16700 - end	2 inch HMA over only (intersection new construction)

FWD DATA - EXAMPLE FWD 9000 LB MAXIMUM DEFLECTION

PAVEMENT REPAIR OVER HIGH PI SOILS

Use Geogrid Reinforcement to control reflective cracking from the subgrade.

FM 1915 – RECONSTRUCTED IN 1997 US DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY

All sections have 10" lime treated subbase (5% lime) and a seal coat surface.

TEST SECTION SUMMARY

Section 1	Control Section	Section 2
Geogrid and 8"	No Geogrid	Geogrid and 5"
Flexible base	8" Flexible Base	Flexible base
0.65 miles west of	1.6 miles west of	2.5 miles west of
Little River Relief	Little River Relief	Little River
Bridge	Bridge	Relief Bridge
Subgrade 6" to 6' PI = 37 Black clay Subgrade 6' to 8', PI = 36 gray clay	Subgrade 0' to 1', PI = 26 Brown clay Subgrade 1' to 2', PI = 19 Tan silty clay Subgrade 2' to 6', PI = 37 Black clay Subgrade 6' to 8', PI = 31 Gray clay	Subgrade 0' to 8' PI = 49 Black clay
No Cracking at yr 5	Cracking at yr 5	No Cracking at yr 5

FM1915 – 5 & 16 YEARS AFTER RECONSTRUCTION

DISTANCES MEASURED FROM LITTLE RIVER RELIEF BRIDGE

FM1915 – 5 & 16 YEARS AFTER RECONSTRUCTION

DISTANCES MEASURED FROM LITTLE RIVER RELIEF BRIDGE

DESIGN APPROACH

- Utilize the U.S. Department of Agriculture Soil Conservation Service maps to identify possible problem soils. Define testing locations based on this information.
 - This is in addition to the Districts standard one mile testing frequency.
- Perform soils tests to a depth of seven feet below the pavement.
 - This depth is based on the moisture fluctuation within the district.
- Define the limits of potential problem areas based on the soil testing.
- Analyze the FWD data, looking for areas of weak subgrade.
- Drive the project and look for existing problems and areas maintenance has already repaired.
- Combine all the information to define the limits of Geogrid reinforcement.

GEOGRID COST INFORMATION

Description	Geogrid Cost	FY 01 & FY 02 Maintenance Cost
SH OSR 0475-03-048	n/a	\$38,900
SH OSR 0475-03-053	\$55,734	n/a

FY 00 average Geogrid Cost = \$1.89/sy

FY 01 average Geogrid Cost = \$1.60/sy

- These projects are adjacent between the Navasota River and FM39 in
- Madison County. The benefit is in extending the service life of pavements under environmental loads, and consequently, reducing the maintenance costs associated with these roads
- Note: Reference TxDOT research project 5-4829 for additional information.

NEW APPROACHES TO SHOULDER WIDENING

Base

Existing Gravel Blend

SH 21 EAST OF US 290

CONTROL TRANSVERSE CRACKS IN STABILIZED BASE MICRO-CRACK CEMENT TREATED BASE

Microcracked

Not Microcracked

MICRO-CRACKING

- Determine optimum stabilizer content based on unconfined compressive strength and moisture susceptibility.
- 12 ton vibratory roller
- 1 –2 days after placement
- 2-3 mph, High amplitude
- 2-4 passes
- Test after 2 passes
- TxDOT research project 4502

RIGID PAVEMENT CASE STUDY

FM 2347 FROM FM 2154 TO FM 2818, BRAZOS COUNTY TEXAS

JOINTED CONCRETE PAVEMENT

Random Longitudinal Cracks

9" CPCD 4" HMA 10" Lime Treated Subgrade Subgrade PI ranges from 14 to 49

REPAIR DETAIL – REINFORCED PATCH OF JOINTED CONCRETE PAVEMENT

FM 2347 CONCRETE REPAIR

2006 – Before Repairs

2013 – 7 years after repairs

FM 2347 CONCRETE REPAIR

Reinforced Patch

Crack is Controlled

MAINTENANCE

- Widen Edge for Support
- Herbicide
- Blade back soil buildup
- Fix dropoffs

CONCLUSION

- Determine the cause of the cracking
 - Research History
 - Perform Field Testing
- Design a cost effective solution
 - Improve edge support
 - Consider Geogrid Reinforcement
 - Microcrack stabilized bases
 - Reinforce patches in Jointed Concrete
- Perform Routine Maintenance
 - Herbicide
 - Blade edges

QUESTIONS

Heather Goehl Fightin' Texas Aggie Class of 2013

